文章摘要
孟美任,彭希珺. 基于VSM和余弦相似度的稿件精准送审方法. 中国科技期刊研究, 2018, 29(10): 982-986
基于VSM和余弦相似度的稿件精准送审方法
Method for accurate assignment of manuscript review based on VSM and cosine similarity
投稿时间:2018-06-19  修订日期:2018-08-14
DOI:10.11946/cjstp.201806190534
中文关键词: 权重以构建专家VSM  最后,利用余弦相似度模型为稿件匹配最优的外审专家。【结果】 拒审会导致审稿周期加长,并且外审专家库中活跃的审稿专家减少。实验结果表明,所提方法能够提高稿件送审的准确率。【结论】 所提出的稿件送审方法能够弥补人为匹配的缺陷,降低拒审概率。
英文关键词: Peer review  Peer reviewer  Rejection  Cosine similarity  Vector space model  Scientific journal
摘要点击次数: 243
全文下载次数: 338
基金项目:中国科学院文献情报中心青年人才领域前沿项目“嵌入式科研工作流的新型出版模式研究”(项目编号:馆1725)
作者单位E-mail
孟美任 中国科学院文献情报中心,北京市中关村北四环西路33号 100190
中国科学院大学,北京市石景山区玉泉路19号(甲)100049 
mengmr@mail.las.ac.cn 
彭希珺 中国科学院文献情报中心,北京市中关村北四环西路33号 100190  
中文摘要:
      【目的】 为解决审稿专家信息更新不及时、编辑凭经验送审等因素导致拒审的问题,提出一种基于向量空间模型(Vector Space Model,VSM)和余弦相似度的稿件精准送审方法。【方法】 首先,结合文献调研和《数据分析与知识发现》送审情况分析拒审的关键原因;其次,在中国知网中获取该刊审稿专家(155人)近5年发表的全部论文(1805篇),并使用词频-逆文档频度(Term Frequency-Inverse Document Frequency,TF-IDF)方法计算
英文摘要:
      [Purposes]This paper aims to propose a method for accurate assignment of manuscript review based on vector space model(VSM)and cosine similarity, and reduce the rate of rejection caused by lack of update of peer reviewers' information and subjectivity of editors. [Methods] We first analyzed the reasons of rejection based on literature research and the submission of Data Analysis and Knowledge Discovery. Then, we collected 1805 papers published by the peer reviewers from CNKI, and constructed VSM for peer reviewers by using term frequency-inverse document frequency(TF-IDF). Finally, we selected the optimal peer reviewers for papers by cosine similarity model. [Findings] The peer review cycles would be delayed as a result of rejection, and active peer reviewers are reducing. The experimental result shows that the proposed method could accurately assign peer reviewers for papers. [Conclusions] The proposed method can make up the defects of artificial matching and reduce the rejection probability.
HTML   查看全文   查看/发表评论  下载PDF阅读器
关闭
微信扫一扫看